Combinatorial Control of Global Dynamics in a Chaotic differential equation
نویسنده
چکیده
Controlling chaos has been an extremely active area of research in applied dynamical systems, following the introduction of the Ott, Grebogi, Yorke (OGY) technique in 1990 [Ott et al., 1990], but most of this research based on parametric feedback control uses local techniques. Associated with a dynamical system which pushes forward initial conditions in time, transfer operators, including the Frobenius–Perron operator, are associated dynamical systems which push forward ensemble distributions of initial conditions. In [Bollt, 2000a, 2000b; Bollt & Kostelich, 1998], we have shown that such global representations of a discrete dynamical system are useful in controlling certain aspects of a chaotic dynamical system which could only be accessible through such a global representation. Such aspects include invariant measure targeting, as well as orbit targeting. In this paper, we develop techniques to show that our previously discrete time techniques are accessible also to a differential equation. We focus on the Duffing oscillator as an example. We also show that a recent extension of our techniques by Góra and Boyarsky [1999] can be further simplified and represented in a convenient and compact way by using a tensor product.
منابع مشابه
Finite Time Mix Synchronization of Delay Fractional-Order Chaotic Systems
Chaos synchronization of coupled fractional order differential equation is receiving increasing attention because of its potential applications in secure communications and control processing. The aim of this paper is synchronization between two identical or different delay fractional-order chaotic systems in finite time. At first, the predictor-corrector method is used to obtain the solutions ...
متن کاملControl of a Chemical Reactor with Chaotic Dynamics
In this paper, control of a non-isothermal continuous stirred tank reactor in which two parallel autocatalytic reactions take place has been addressed. The reactor shows chaotic behavior for a certain set of reactor parameters. In order to control the product concentration, an optimal state feedback controller has been designed. Since concentrations of reactor species are ...
متن کاملGlobal Stabilization of Attitude Dynamics: SDRE-based Control Laws
The State-Dependant Riccati Equation method has been frequently used to design suboptimal controllers applied to nonlinear dynamic systems. Different methods for local stability analysis of SDRE controlled systems of order greater than two such as the attitude dynamics of a general rigid body have been extended in literature; however, it is still difficult to show global stability properties of...
متن کاملGlobal Finite Time Synchronization of Two Nonlinear Chaotic Gyros Using High Order Sliding Mode Control
In this paper, under the existence of system uncertainties, external disturbances, and input nonlinearity, global finite time synchronization between two identical attractors which belong to a class of second-order chaotic nonlinear gyros are achieved by considering a method of continuous smooth second-order sliding mode control (HOAMSC). It is proved that the proposed controller is robust to m...
متن کاملGlobal dynamics of a differential equation with piecewise constant argument
Several aspects of global dynamics are studied for the scalar differential-difference equation εẋ(t) + x(t) = f (x([t])), 0 < ε 1, where [·] is the integer part function. The equation is a particular case of the special discretization (discrete version) of the singularly perturbed differential delay equation εẋ(t)+ x(t) = f (x(t−1)). Sufficient conditions for the invariance, global stability of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- I. J. Bifurcation and Chaos
دوره 11 شماره
صفحات -
تاریخ انتشار 2001